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We created an age structured epidemiological MSIRV (Maternally im-
mune - Susceptible - Infected - Recovered - Vaccinated) compartmental model,
following methods developed by Metcalf et al. [1]. Our simulations require
five steps, outlined below: initiating the starting susceptible population size
and distribution, forward simulation of the susceptible population through
time, evaluation of RE at each time point, estimation of the integrated epi-
demic risk, and a simple marginal cost comparison.

1 Initiating the population

We generated simulations based on the urban population of four countries
in sub-Saharan Africa; Nigeria, Ethiopia, Equatorial Guinea, and Swaziland.
The simulated populations do not strictly represent the countries, but rather
populations with similar demographics. We used projections for urban set-
tings only, as the urban populations are more connected between themselves
and could be considered a single mixed population. Further, we note that
results for rural populations are qualitatively similar (a rural setting is ex-
pected to have lower vaccination coverage than an urban setting), and are
not discussed further in this manuscript.

The population age structure is based on estimates from “Worldpop” [ref.
“http://www.worldpop.org.uk/”]. We stratified the population into 225 age
groups (monthly strata up to 15 years of age yearly thereafter). Each strata
in the population is further structured as an MSIRV model, with the key el-
ement being a matrix that at every time-step (a bi-week, equal to the latent
plus infectious period of measles) defines the transition from every possible

1



epidemiological stage (e.g. maternally immune, susceptible, infected, recov-
ered, or vaccinated) and age combination to every other epidemiological stage
and age combination [1]. We assumed seasonal fluctuations in transmission
[1], Figure S2 − right; and an R0 of 15.

To initialize the populations, we need to assign for each age bin, how
many people are in each epidemiological status:

1.1 Vaccinated

We assumed that a fraction, Pt, was vaccinated based on the UNICEF/WHO
administrative estimates since 1980 and the efficacy of the vaccine (see Table
S1 at the end of the document). We also assume that some cohorts received
a second opportunity for vaccination through previous SIAs conducted in
the populations. All individuals are assumed to have the same probability
of being vaccinated. Vaccine efficacy was modelled as a saturated function
of age, based on the vaccine efficacy trials by Boulianne et al. [2]. Moreover,
we limited the maximum efficacy of the vaccine to 97%.

1.2 Recovered

These individuals had measles in the past and thus are no longer suscepti-
ble. To model natural exposure to measles, we made the simple assumption
of a constant hazard rate of infection with age (measured in months); thus
the probability of remaining susceptible declines as an exponential function
of age. We assumed a rate of 0.02 for the exponential, which is equivalent
to assuming a mean age of infection of 4 years and moved the appropri-
ate proportion of unvaccinated individuals to the recovered status. We also
explored sensitivity to variation in the average age of infection, which will
change the initial proportion of naturally immunized in the population (see
below sensitivity to natural exposure section).

1.3 Infected

Our simulations occur under the assumption that we have achieved elimi-
nation, and thus there are no infected individuals at the beginning of the
simulation. Infected individuals are seeded at a later stage in the model (see
RE and IER section in the main article).
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1.4 Maternally immune

A fraction of the population will have protection due to maternal antibod-
ies. The decay of maternal immunity with age was modeled as a monthly
exponential decline with a rate= 0.45 [3], all individuals are assumed to be
born with maternal immunity (so maternal protection for the first age bins
is 100%).

1.5 Susceptibles

The remainder individuals that are not allocated to any of the previous epi-
demiological status are assumed to be susceptible.

2 Forward simulations

We simulate the trajectory of the population forward for 15 years, from 2015
to 2030, which involves tracking aging, births and mortality and changes in
epidemiological status (loss of maternal immunity and vaccination) in each
age group.

Aging can be trivially modeled by assuming the proportion of individuals
aging in each time step is one over the size of the age group, measured in
bi-weekly time-steps (i.e. 1/2 for the monthly age bins, 1/24 for the yearly age
bins). The birth rates were taken from “World Bank” (“http://data.worldbank.org/”),
and we assumed the same birth rate of 2015 is maintained throughout the
simulation. Mortality in each age group was estimated by interpolating to our
age groups the data from the UN Department of Economic and Social Affairs
model life tables (“http://esa.un.org/unpd/wpp/Download/Standard/Mortality/”),
which is given in 5 year age bins.

Maternal immunity status can only be achieved at birth, and we assume
that all newborns have maternal immunity. The loss of maternal immunity,
modelled as above, will move individuals to a susceptible state. Vaccina-
tion is added from two sources, routine coverage and SIAs, as described in
the next paragraph. Susceptible and Maternally Immune individuals can be
vaccinated and moved to the vaccinated state, and while recovered individ-
uals could potentially be vaccinated, in our model we consider that both
recovered and vaccinated states are fully immunized and thus movements
between these two states are irrelevant. Susceptible individuals can also be-
come infected, which will last one time-step (2 weeks) and then moved to the
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recovered state. All relevant transitions between epidemiological states are
summarized in Figure S1.

Figure S1: Epidemiological transitions considered in each age bin.

Routine vaccination coverage levels reflected those achieved in 2014 (the
most recently available year in the WHO/Unicef database) and remained
constant over the simulation time-frame. For SIAs, we explored scenarios
reflecting campaigns targeting 3 different age classes (9m to 5y, 9m to 10y,
9m to 15y) occurring every 4 years, which translates into 3 vaccination cam-
paigns in 2019, 2023 and 2027. The frequency of campaigns reflected WHO
recommendations from the global measles and rubella strategic plan [4, 5].
Though the intent of campaigns is to vaccinate a large proportion of suscepti-
bles in the target age class, the proportion of susceptibles immunized in these
campaigns may differ from the vaccination coverage because of logistical con-
straints in implementation, under-estimation of the target population size,
or heterogeneity in access to vaccination services [6]. Thus, we considered
two levels of immunization achieved by these campaigns: 70% and 90%.

In practice, many countries conduct so-called “catch-up” SIAs, which
target a wide age range, followed by “follow-up” campaigns, which target a
narrower range [7]. We explored scenarios in which the first SIA targeted a
wide age range (9m to 10y or 9m to 15y) followed by two “follow-up” cam-
paigns that targeted only children under 5 years. The timing of these 3 SIAs
is the same as in the scenarios with the 3 equal ones (first in 2019, then
2023 and 2027). In these scenarios, we assumed that the proportion of im-
munization achieved in both the “catch-up” and “follow-up” campaigns was
consistent, either 70% or 90%. Simulations where the “catch-up” campaign
targets individuals from 9m to 5y is redundant with previous settings.

These forward simulations are run under the assumption that elimination
has been achieved, which means that there are no infected individuals (addi-
tional simulations are run with infected individuals and are explained in the
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Integrated Epidemic Risk section). The susceptible population hence will
slowly increase based on the number of unvaccinated births (missed by rou-
tine coverage) and drastically decrease when the supplementary campaigns
are implemented. With the initial susceptible age distributions obtained as
described in the previous section, all populations start with a RE below 1,
so the minimal condition for elimination holds.

3 Evaluation of RE at each time step

Based on the population structure from the forward simulations (projected
population size and age distribution of susceptibles), we estimated the effec-
tive reproduction number, RE in each time step for the length of the model
run (15 years). RE is the dominant eigenvalue of the next generation matrix,
which can be constructed in each time step and requires the specification of
a contact matrix.

Because contact patterns over age are unknown for the countries modelled
here, we chose to reflect the contacts between age classes using data from the
POLYMOD diary studies based on 8 different European countries [8], Figure
S2 − left. The qualitative patterns indicated by POLYMOD are broadly
consistent across Europe, and are echoed in a number of other settings [9, 10],
and therefore likely to be a reasonable approximation of local patterns.
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Figure S2: Visual representations of the Who Acquires Infection From Whom
(WAIFW) matrix on the left; seasonal forcing as modelled in [1] on the right.
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4 Estimation of the Integrated Epidemic Risk

(IER)

The effective reproduction number, RE, is a standard characterization of epi-
demic potential. However, given that expected outbreak size scales with RE

in a non-linear fashion, it does not fully capture the increased outbreak risk
associated with RE values slightly above 1. We characterize the Integrated
Epidemic Risk as the expected outbreak size, divided by the total population,
N , and averaged over the simulation time frame, T ,

IER =
1

T

T∑
t=0

Ct

Nt

(1)

where Ct is the expected outbreak size after a single introduction at time
t and allowing for the potential outbreak to develop over a maximum time
of 1 year, Nt is the population at the time of the introduction. We assume
that the initial infectious individual is in the highest transmitting age class
at that time step (normally an individual younger than 15 years of age),
as this represents the worst-case scenario. Estimating the outbreak size in
this way assumes that the population is well mixed spatially − while this is
unlikely to be the case, the consequence will be over-estimation of outbreak
sizes, which will make our results conservative.

Given the non-linear relationship between RE and epidemic size, the IER
reflects better the relatively high risk associated with allowing RE to increase
beyond 1. Thus, a decision-maker should be averse to RE values slightly over
1, because an outbreak, if it occurred, would be disproportionately large.
Averaging over the full time frame balances periods of low risk (i.e. small
expected outbreaks) against periods of high risk. To reflect these fluctuating
risks, we also calculated the interquartile range across the 15 years, which
captures the differences between an introduction at a low and a high risk
setting (which depends on the RE at the time of the introduction). A wide
difference in these quantiles indicates either large fluctuations of RE at low
values (i.e. around 1) or relatively small fluctuations at higher RE values
(i.e. RE between 2 − 3).

We can then relate the number of secondary cases arising in each time
step to the RE in the population at the time of the introduction to obtain
a utility function, Figure S3. Here, this utility function characterizes how
the number of secondary cases varies as the RE changes − so captures the
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Integrated Epidemic Risk. It is of key importance because it quantifies the
integrated outbreak risk over coming years and thus enhances the ability of a
decision maker to act appropriately, since alternative campaign designs will
have variable impacts on changes in RE [11]. Utility functions have been
used in the past in similar settings [12].

Figure S3: Utility function showing the increase in expected outbreak size
as the RE increases. Vertical dashed line indicates the threshold of RE = 1.
Shaded area shows the confidence interval.

5 Simple marginal cost comparison

Higher campaign coverage or wider age targets will result in a greater re-
duction in susceptibles and lower IER. However, the marginal benefits of
increasingly large campaigns should decrease once a campaign is of sufficient
coverage to reduce RE to below 1 and because older individuals are more
likely to be previously immunized. Thus we present the impact of larger
campaigns in terms of the marginal benefit; i.e. reduction of IER per dose
required to implement the campaigns, where the number of doses is used as a
simple characterization of campaign cost. SIAs do not generally attempt to
discriminate between immune and susceptible individuals within the target
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age range. As a result, previously vaccinated individuals (via routine vac-
cination or in a previous campaign) may be re-vaccinated. The minimum
number of doses required for an SIA is thus defined by a combination of the
number of individuals in the target age range, and the vaccination coverage
the SIA achieves. The true cost of campaigns will depend on operational
costs, as well as cost of vaccines and supplies; Vijayaraghavan et al. [5] es-
timated that vaccine cost and medical supplies account for around 65% of
the total cost, while the rest are operational costs. A formal assessment of
the operational costs of campaign deployment in each country is beyond the
scope of this work, though such an analysis could be incorporated in the
framework presented here.

We compared the minimum number of doses needed with the IER (as
defined above) for each scenario, showing both the median, as well as the 25th
and 75th quantiles, which reflects a lower and higher risk setting respectively.
To enable comparisons between the different scenarios, we calculated the
relative difference, dr, in IER using the lowest impact SIA campaign studied
(70% immunization of children up to 5 years of age) as the reference (default
campaign). As the campaigns increase in coverage or in the extent of the
population targeted, the number of vaccine doses required will increase and
the number of secondary cases after a single introduction will decrease. By
calculating the standardized ratios we can clearly characterize how much a
campaign will reduce the number of secondary cases, and at what cost in
terms of increased number of doses deployed.

6 Sensitivity to natural exposure

The proportion of recovered individuals, which represents the individuals
that had measles and haven’t been vaccinated, has been modelled in the
past as an exponential increase over time [1] with a rate parameter for the
exponential that will affect the average age of infection. We used a rate so
as to have a mean age of infection of 4 years as well as exploring a higher
rate (mean age of 3.3 years) and a lower rate (mean age of 8.3 years), shown
in Figure S4.

The change in the initial proportion of susceptibles is shown in Figure S5.
The most significant variation occurs, in all populations except Eq. Guinea,
in older age classes (> 25 years of age), while in Eq. Guinea is around 10−15
years of age. This can be linked to how previous SIAs, vaccine coverage
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Figure S4: Proportion of the population in each age bin that is recovered, i.e.
has had measles in the past and can no longer be infected. The curves were
modelled using an exponential function with rate 0.02 (black) for an average
age of infection of 4 years; 0.025 (purple) for an average age of infection of
3.3 years; 0.01 (green) for an average age of infection of 8.3 years.

changes and births scale with a bigger susceptible pool. It is important to
note that the larger number of susceptible occurs with a higher average age
of infection, which is unlikely to happen when coverage is low. Moreover, a
low rate parameter in the exponential function, which causes a high mean
age of infection in Eq. Guinea, causes the population to be with an RE over
one at the beginning of the simulations, which means that it would not be in
an elimination setting and therefore could not be considered further. Due to
the low vaccination coverage, it is unlikely that Eq. Guinea has such a high
mean age of infection. The results for all the forward simulations considered
remain qualitatively similar to the results shown in the main manuscript and
are not discussed further.
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7 Sensitivity to R0

In our model, we assumed the value for the R0 of measles to be 15. We
explored here a low and high value for R0, 12 and 18 respectively, in line
with the range reported in [13]. Shown in Figure S6 are the results for
Ethiopia, with the rest of the countries studied in the manuscript exhibiting
qualitatively similar results.
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Figure S6: Relative difference in IER (dr IER) as the SIA campaign increase
in coverage and target population in Ethiopia. The reference used is the de-
fault SIA campaign (70% coverage, target population up to 5 years).Vertical
lines show the interquartile range. The y axis was logged and truncated in
the right plot for easier interpretation of the results, y axis limits are different
than in Figure 2 of the main manuscript. Black lines indicate 70% coverage
SIAs while purple lines show the results for 90% coverage.

As shown in Figure 2 of the main article, qualitatively similar results
are obtained across a range of R0 values. The interquartile range tends to
increase with higher R0, as transmission is higher, and thus the variation
in integrated epidemic risk will increase. Extending R0 further beyond this
range does not modify the broad conclusions(not shown), with lower R0 val-
ues giving results in line with highly vaccinated countries (such as Swaziland)
and higher R0 values giving results similar to countries with lower historical
routine coverage (such as Eq. Guinea).

8 Alternative contact matrix

Our model was built using the POLYMOD diary studies [8]. However, these
studies were originally done in European countries, and thus the contact
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structure is likely to be different in Sub-Saharan African countries. We sim-
ulated a flat contract matrix (i.e. same contact between all age classes),
as an alternative to POLYMOD, shown in Figure S7 are the results for the
four countries studied. In general, the integrated epidemic risk is slightly
higher using a flat contact matrix, which is expected. However, the qual-
itative trends are still maintained, IER decreases as coverage / target age
range increases, and targeting individuals up to 15 years does not provide
significant benefits compared to 10 years, for a given coverage.
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Figure S7: Relative difference in integrated epidemic risk (dr IER) as the
SIA campaign increase in coverage and target population in all four countries
modelled. The reference used is the default SIA campaign (70% coverage,
target population up to 5 years).Vertical lines show the interquartile range.
The y axis was logged. Black lines indicate 70% coverage SIAs while purple
lines show the results for 90% coverage.

9 Changing Birth rates

Our simulations in the main paper assume a fixed birth rate for the projec-
tions 15 years into the future (from 2015 to 2030), using the most recent
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reported birth rates for each country. We explored in this section the effect
of allowing birth rate to change over time. To be more precise, we expect
birth rates to decline in the four countries studied here [14]. We decided to
model that decline using a logistic function, with the lower asymptote being
the birth rate needed to maintain a total fertility rate (TFR) of 2.1, which
is in line with modernized western countries. The main results of relative
difference in IER for the four countries studied are shown in Figure S8.
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Figure S8: Relative difference in integrated epidemic risk (dr IER) as the
SIA campaign increase in coverage and target population in all four countries
modelled. The reference used is the default SIA campaign (70% coverage,
target population up to 5 years).Vertical lines show the interquartile range.
The y axis was logged. Black lines indicate 70% coverage SIAs while purple
lines show the results for 90% coverage.

The main difference in our results is the change in relative number of
doses. Because the birth rates are lower, the total number of doses used
is lower (e.g. The basic 70% coverage, up to 5 years SIAs campaign in an
Ethiopia-like population requires slightly over 1M doses, while in the main
manuscript it was well over 3M). However, the relative change in doses as
we increase coverage / target upper age increases (note the change in the
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x-axis in Figure S8 compared to Figure 2 of the main manuscript). In some
countries, such as the Eq. Guinea-like population, the interquartile range
also increases, this is also expected, as in a smaller population, due to the
reduced birth rate, the relative effect of a few infected individuals is more
significant. Nevertheless, our general conclusions on the relative change in
integrated epidemic risk as SIA campaigns increase in coverage / target upper
age are qualitatively the same, where increase target age for SIAs up to 15
years, in a setting such as ours with recurrent campaigns every 4 years, does
not provide significant benefits over targeting individuals up to 10 years.
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10 Historical Vaccination Data

The tables below summarize the vaccination data used to initialize the pop-
ulations, both routine and previous SIAs [15]. For missing data on routine
vaccination coverage, we used smoothing splines with six degrees of freedom
to interpolate the values. For the historical SIAs, some of the data is from
administrative coverage, we assumed an overlap equal to 1, which means
that only the highest coverage in each age bin is taken into account, the
maximum coverage was also limited to 100%. Uncertainty in the historical
vaccination data, particularly the SIAs campaigns is accounted for in the
sensitivity analysis to natural exposure, which effectively moves individuals
out of the susceptible class.

Table S1: Historical vaccination coverage for the 4 countries considered, dur-
ing the more recent 20 years. Older values are available online at the WHO
website. The value for the most recent year, 2014, is used in the forward
simulations as routine vaccine coverage achieved.

Coverage
(%) / Year

2014 2013 2012 2011 2010 2009 2008 2007 2006 2005

Ethiopia 81 78 80 82 81 75 74 65 63 59
Nigeria 73 73 78 93 85 81 68 86 99 34

Eq. Guinea 43 41 34 50 51 77 76 37 25 24
Swaziland 97 97 88 98 94 72 69 58 57 60

Coverage
(%) / Year

2004 2003 2002 2001 2000 1999 1998 1997 1996 1995

Ethiopia 56 44 42 40 37 32 46 33 34 38
Nigeria 40 - - - 30 - 26 38 38 44

Eq. Guinea 33 36 51 52 19 24 - 82 61 61
Swaziland 70 94 72 72 80 82 82 92 82 94
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Table S2: Historical supplementary immunization activities (SIAs) in the
4 countries considered, including coverage and age range. The data were
originally sourced from WHO [15].

Country Year
Coverage

(%)
Age range
(months)

Ethiopia 2000 95 9 − 59
Ethiopia 2001 76 9 − 59
Ethiopia 2002 98 9 − 168
Ethiopia 2003 91 6 − 168
Ethiopia 2004 84 6 − 168
Ethiopia 2005 92 9 − 59
Ethiopia 2005 69 6 − 168
Ethiopia 2006 87 9 − 59
Ethiopia 2007 96 6 − 59
Ethiopia 2008 92 6 − 59
Ethiopia 2009 95 6 − 59
Ethiopia 2010 91 6 − 59
Ethiopia 2010 100 9 − 47
Ethiopia 2011 98 9 − 47
Ethiopia 2011 96 6 − 168
Ethiopia 2013 98 9 − 59

Nigeria 2005 95 9 − 180
Nigeria 2006 83 9 − 180
Nigeria 2007 89 9 − 59
Nigeria 2007 78 60 − 132
Nigeria 2008 97 9 − 59
Nigeria 2011 100 9 − 59
Nigeria 2013 26 6 − 59
Nigeria 2013 100 9 − 59

Eq. Guinea 2003 17 0 − 23
Eq. Guinea 2005 44 9 − 180
Eq. Guinea 2009 80 12 − 59
Eq. Guinea 2011 50 9 − 47
Eq. Guinea 2012 58 9 − 59

Swaziland 2002 81 9 − 59
Swaziland 2006 91 9 − 59
Swaziland 2009 96 9 − 47
Swaziland 2010 90 9 − 59
Swaziland 2013 97 6 − 59
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